SETS OF COMPLEX NUMBERS ASSOCIATED WITH A MATRIX
By W. V. PARKER

1. Introduction. Let A = (a,;) be a square matrix of order n whose elements
are complex numbers. If z = (x,,2,, - ,x)andy = (1, ¥, -+, Ya) are
vectors such that

(1) 2Z = Exi—ji =1, vy = Z Yy, = 1,

then Ay = DX i) 0%¥; = a, where « is a complex number. If 8, is the
set of all complex numbers of the form Ay’ where x and y satisfy conditions
(1), then S, is the set of all complex numbers in or on the circle of radius p,
about zero in the complex plane, where p, is the largest of the characteristic
roots of AA’ (see [3]). It is the purpose of this paper to investigate this set
further and also to investigate two subsets of this set. The set S, is the set of
elements of all matrices UAV’ where U and V are unitary matrices
(v’ =vv' =1).

The set S, consisting of all complex numbers of the form xAZ’, where z
satisfies (1), is a closed convex set in the complex plane and is called the field
of values of A (see [1]). The set S, is the set of all diagonal elements of all
matrices UAU’ where U is a unitary matrix. Hence S, is unchanged if 4 is
replaced by UAU’. The set S; consisting of all complex numbers of the form
xAY’, where x and y satisfy (1) and also 25’ = 0, is the set of all non-diagonal
elements of all matrices UAU’ where U is a unitary matrix. The set S; is also
unchanged if A is replaced by UAU’.

2. The sets S, and S, . If the characteristic roots of AA’ are p? < p2 <

- < poand R = diag. {p1, p>, -, p} where p; > 0, there exist unitary
matrices U and V such that U'AV = R (see [2; 78]). Hence URV’' = 4 =
(a;;) and a,;; = w;Rv} , where w; = (U1, sz, +++ , Usn) a0d v; = (v , Vsy,

*, 0;,) are the ¢-th rows of U and V respectively. Write | u,.| = £ and
v | = 7. and it follows that

| Qi I < kzl orEirNik < % /CE':: Pk(ék + ﬂ?k) < %Pn ; (f?k + 77?1:) = Pny

since
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TureoreEM 1. The elements of a matriz A are all in or on the circle of radius p,

about zero in the complex plane, where pi is the largest of the characteristic roots
of AA’.

The matrix R is unchanged if A is replaced by any one of its unitary trans-
forms (UAU’). Hence all elements of S, and S; are in or on this circle.

TueoreEM 2. The field of values of A is contained in the circle of radius p, about
zero in the complex plane, where p, is the largest of the characteristic roots of AA’.

If in the vector x each component x; = ¢; /n* where ¢; is a unit scalar, then
AT = n”' D_%.1 a;tit; and this number belongs to S, . In particular for
ti=1t4=12 -+ ,n zA% = n"" D 4.1 a;; . The field of values of 4, ,
any k-rowed principal sub-matrix of 4, lies in S, and hence (see [4]) we have

TueoreM 3. The field of values of A coniains s,/k where s, is the sum of the
elements in any k-rowed principal sub-matriz of A or of any of its unitary trans-
forms fork = 1,2, -+ n.

If u = zAY, 2y’ = 0, is in S; and ¢ is a unit scalar, then tu = (fx)Ay’ and
(tx)y’ = t(2y’) = 0 so that tu is also in S; . Since there is a unitary matrix U
such that UAU’ is triangular, the number zero is in S; . .

If B = A — mlI where m is a scalar, and U is a unitary matrix, then UBU’ =
UAU’ — mI. Hence the set S; for the matrix B is the same as the set S; for
the matrix A. If the characteristic roots of BB’ are o; , 03 , --+ , 0. Where
0< o <0,< -+ < o,, then o, is a function of m and the elements of the
set S; are all in or on the circle about zero of radius min (s,).

THEOREM 4. The non-diagonal elements of all unitary transforms of the matrix
A lie in or on the circle about zero of radius min (c,), where oo 18 the greatest of
the characteristic roots of (A — mI)(A' — mlI).

3. Normal matrices. In general for non-normal matrices, the field of values
of A lies within the circle of radius p, . However this is not always true for if

the characteristic roots of AA’ are (a + b)% (a — b)*, and k* where a* = b* +
¢ and hence p; = kif k > a + b.

If A is normal (AA’ = A’A) the characteristic roots of 4 lie on the circles
of radii p, , po, * -+, p, (see [3]). Hence for normal matrices lower bounds for
the greatest characteristic root are obtained from Theorem 1 and Theorem 3.
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TeEOREM 5. Every normal matria A = (a;;) has at least one characteristic root
A such that | N | > max | a,; | and such that | N | > k™' max | s, |, where s, 1s the
sum of the elements in any k-rowed principal sub-matriz of A.

COROLLARY. If pZ is the largest characteristic root of AA’, then

P > max Z Wil |, o= n Z @irlir |-
k=1 iik=1
If the characteristic roots of the normal matrix 4 are X\, , A;, -+ , A, where
M = oy + 1B, , the characteristic roots of (4 + A’)/2 are @y , &y, +++ , a, and

the characteristic roots of (4 — ;1_’) /2 are B8y , B>, -+, B, . Hence lower
bounds for the greatest real and imaginary parts of the characteristic roots are
given by the following theorem.

THEOREM 6. If A s a normal matrixz with characteristic roots N\, = oy + 6y ,
k=1,2 -+ n,then

max | a; | > max | 3a:; + @;0) |, max | B | > max | ¥a.; — @;1) |,
and also

max | e | > max | (s, + 5.)/2r |, max | B, | > max | (s, — 5.)/2r |,
where s, 18 the sum of the elements in an r-rowed principal sub-matriz of A.

For a normal matrix it follows from Theorem 4 that max [ A, — m | > [ a,; |,
7 5% j, where m is the center of the smallest circle containing the characteristic
roots of the matrix. If in particular A is an Hermitian matrix with charac-
teristic roots A, < N, < A3 < --- < N, A real, then m = (A, + \,) and
max |\, — m| = 3(\, — \,) and the following theorem is established.

TeEOREM 7. If A = (ai;) s an Hermitian matriz with characteristic roots
MM s <N then 3\, — A) > max | ay; |, 7 7

For the Hermitian matrix A:there exists a unitary matrix U such that UAT’ =
L = diag. {\1, Nz, * -+, N\.}. Theset S; for L is identical with the set S, for 4.
If \o = N, L is a scalar and hence S, consists of the number zero only.
Assume A, > A; and let x and y be real unit vectors with all components zero
except the first and n-th. Since 2} + 2 = 1, 41 + ¥2 = 1 and 2,9, + %y, = 0,

it follows that (z,y, — z,4:)> = 1 and hence 2, = oy, and z, = —oy,
where ¢ = 1. Then ng7’ = MZ1%1 + Nl = a'ylyn()\l - )‘n) =, and
[v] = lowal 0w — A) < 301 + )\ — M) = 3\ — ). In particular

fy, = —ya,|v| =30, — \). Ifyisareal numbersuchthat|y]| <3\, — \)
the equations 4; + y2 = 1 and y,9, = ov/(\: — \,) have solutions of the form
Y= (=% 8)/2,y, = £=(r F 5)/2 where * + §* = 2. Ifz, = oy, and z, =
—oy1, then 2.y, + 2y, = Oand 2§ + a7 = (i + ¥2) = L.
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TurorEM 8. The non-diagonal elements of all unitary transforms of an Hermi-
tian matrix A consist of all complex numbers v such that | v | < (A, — \,)/2 where
N, 18 the least and X, Us the greatest of the characteristic roots of A.

4. The set S, . Since S, is a closed convex set which contains the diagonal
elements of 4, it also contains the number ¢ = 27 'T'(A) where T(A) = E?,l iy
is the trace of A. Let u, be a vector such that u,4u{ = ¢ and let U be a unitary
matrix whose first row is u, , then UAU’ is a matrix whose first diagonal element
is c.

Suppose that 17 is a unitary matrix such that

_ 4, A
VAV =
112 143
where A, is a square matrix whose k£ diagonal elements are all equal to ¢. Since
T(VAV') = T(A), T(4;) = (n — k)c and there exists a unitary matrix W,
such that W,A4,W} has its first diagonal elements equal to ¢. If

I, 0
W = )
0 W

then WVAV'W’ has its first k£ + 1 diagonal elements equal to ¢. This completes
the induction for the following theorem.

TaEorREM 9. If A is a square matriz with complex elements, there exists a
unttary matrix ¢ such that the diagonal elements of pA¢’ are all equal.

In particular if A = L = diag. A\, , As, -+ , A} # 0 and D_r, A, = 0,
there exists a unitary matrix U such that

Zuikaik)\k =0 (1 =1, 2’ 7”)!
k=1

and hence the matrix W = (u,;u,;) is singular. If V' = (v,;) is a unitary matrix
such that M = (v;;;) is singular and ¢ = (& , &, -+, &) # 0 is a vector
such that M¢ = 0 then

;vikﬁik&r =0 ('L = 1, 27 e yn);

and hence

n

2 (; vi@ikik) = i (?ﬂ_: Uuﬁik)fk = é & = 0.

i=1 k=1 i=1

If A is a matrix with real elements and z is a real unit vector, then xAz’ =
D %ier @i2; is a real number and zda’ = 24’2’ = x((4 + A’)/2)2’. Since
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(A + A')/2 is a real symmetric matrix every number in its field of values is
given by a real unit vector and by argument similar to the above it follows
that there exists a real orthogonal matrix ¥ such that ¢((4 + A’)/2)¢’ has its
diagonal elements equal. Since y 4y’ and YAy’ have the same diagonal elements
it follows that the diagonal elements of Ay’ are equal and hence each isn ' T(4).

TaeoREM 10. If A is a real matrix there exists a real orthogonal matriz  such
that WAy’ has its diagonal elements all equal.

CoORrROLLARY 1. A real quadratic form with matriz A s equal to k for n mutually
orthegonal unit vectors if, and only if, k = n™'T(A).

COROLLARY 2. Ifa = (a,,a,, -+, a,) # 04s areal vector such that 3., a,
= 0, there exists a real orthogonal matrix C = (cos a;;) such that C, = (cos® a;;)
and C, = (cos 2a;;) are singular matrices and C,a' = C,a’ = 0.

If A = diag. {a,,ay, -+, a,} # 0, the diagonal elements of (AC” are

"

Z COSZ A Ay (1 = ‘5 27 Tt ’n)?

k=1
and if each of these is n™'T(4) = 0, C(,a’ = 0. Since cos’a;, = L + L cos 2a;, ,
n

L3 n
E COSz QO = % Z a + % Z cOos 2(!;411/; = ()
k=1 =t

k=1

and Cya’ = 0 since )i, a, = 0.
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