

SETS OF COMPLEX NUMBERS ASSOCIATED WITH A MATRIX

BY W. V. PARKER

1. Introduction. Let $A = (a_{ij})$ be a square matrix of order n whose elements are complex numbers. If $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ are vectors such that

$$(1) \quad x\bar{x}' = \sum_{i=1}^n x_i \bar{x}_i = 1, \quad y\bar{y}' = \sum_{i=1}^n y_i \bar{y}_i = 1,$$

then $xA\bar{y}' = \sum_{i,j=1}^n a_{ij} x_i \bar{y}_j = \alpha$, where α is a complex number. If S_1 is the set of all complex numbers of the form $xA\bar{y}'$ where x and y satisfy conditions (1), then S_1 is the set of all complex numbers in or on the circle of radius ρ_n about zero in the complex plane, where ρ_n is the largest of the characteristic roots of $A\bar{A}'$ (see [3]). It is the purpose of this paper to investigate this set further and also to investigate two subsets of this set. The set S_1 is the set of elements of all matrices UAV' where U and V are unitary matrices ($UU' = VV' = I$).

The set S_2 consisting of all complex numbers of the form $xA\bar{x}'$, where x satisfies (1), is a closed convex set in the complex plane and is called the *field of values of A* (see [1]). The set S_2 is the set of all diagonal elements of all matrices UAV' where U is a unitary matrix. Hence S_2 is unchanged if A is replaced by UAV' . The set S_3 consisting of all complex numbers of the form $xA\bar{y}'$, where x and y satisfy (1) and also $x\bar{y}' = 0$, is the set of all non-diagonal elements of all matrices UAV' where U is a unitary matrix. The set S_3 is also unchanged if A is replaced by UAV' .

2. The sets S_2 and S_3 . If the characteristic roots of $A\bar{A}'$ are $\rho_1^2 \leq \rho_2^2 \leq \dots \leq \rho_n^2$ and $R = \text{diag. } \{\rho_1, \rho_2, \dots, \rho_n\}$ where $\rho_i \geq 0$, there exist unitary matrices U and V such that $UAV' = R$ (see [2; 78]). Hence $URV' = A = (a_{ij})$ and $a_{ij} = u_{i1}R\bar{v}'_i$, where $u_i = (u_{i1}, u_{i2}, \dots, u_{in})$ and $v_i = (v_{i1}, v_{i2}, \dots, v_{in})$ are the i -th rows of U and V respectively. Write $|u_{ik}| = \xi_{ik}$ and $|v_{ik}| = \eta_{ik}$ and it follows that

$$|a_{ij}| \leq \sum_{k=1}^n \rho_k \xi_{ik} \eta_{ik} \leq \frac{1}{2} \sum_{k=1}^n \rho_k (\xi_{ik}^2 + \eta_{ik}^2) \leq \frac{1}{2} \rho_n \sum_{k=1}^n (\xi_{ik}^2 + \eta_{ik}^2) = \rho_n,$$

since

$$\sum_{k=1}^n \xi_{ik}^2 = \sum_{k=1}^n \eta_{ik}^2 = 1.$$

Received March 8, 1948.

THEOREM 1. *The elements of a matrix A are all in or on the circle of radius ρ_n about zero in the complex plane, where ρ_n^2 is the largest of the characteristic roots of AA' .*

The matrix R is unchanged if A is replaced by any one of its unitary transforms $(UA\bar{U}')$. Hence all elements of S_2 and S_3 are in or on this circle.

THEOREM 2. *The field of values of A is contained in the circle of radius ρ_n about zero in the complex plane, where ρ_n^2 is the largest of the characteristic roots of AA' .*

If in the vector x each component $x_i = t_i/n^{\frac{1}{2}}$ where t_i is a unit scalar, then $xA\bar{x}' = n^{-1} \sum_{i=1}^n a_{ii}t_i\bar{t}_i$ and this number belongs to S_2 . In particular for $t_i = t$, $i = 1, 2, \dots, n$, $xA\bar{x}' = n^{-1} \sum_{i=1}^n a_{ii}$. The field of values of A_k , any k -rowed principal sub-matrix of A , lies in S_2 and hence (see [4]) we have

THEOREM 3. *The field of values of A contains s_k/k where s_k is the sum of the elements in any k -rowed principal sub-matrix of A or of any of its unitary transforms for $k = 1, 2, \dots, n$.*

If $\mu = xA\bar{y}'$, $x\bar{y}' = 0$, is in S_3 and t is a unit scalar, then $t\mu = (tx)A\bar{y}'$ and $(tx)\bar{y}' = t(x\bar{y}') = 0$ so that $t\mu$ is also in S_3 . Since there is a unitary matrix U such that $UA\bar{U}'$ is triangular, the number zero is in S_3 .

If $B = A - mI$ where m is a scalar, and U is a unitary matrix, then $UB\bar{U}' = UA\bar{U}' - mI$. Hence the set S_3 for the matrix B is the same as the set S_3 for the matrix A . If the characteristic roots of BB' are $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$ where $0 \leq \sigma_1 \leq \sigma_2 \leq \dots \leq \sigma_n$, then σ_n is a function of m and the elements of the set S_3 are all in or on the circle about zero of radius $\min(\sigma_n)$.

THEOREM 4. *The non-diagonal elements of all unitary transforms of the matrix A lie in or on the circle about zero of radius $\min(\sigma_n)$, where σ_n^2 is the greatest of the characteristic roots of $(A - mI)(A' - \bar{m}I)$.*

3. Normal matrices. In general for non-normal matrices, the field of values of A lies within the circle of radius ρ_n . However this is not always true for if

$$A = \begin{pmatrix} k & 0 & 0 \\ 0 & c & 2b \\ 0 & 0 & -c \end{pmatrix}$$

the characteristic roots of $A\bar{A}'$ are $(a + b)^2, (a - b)^2$, and k^2 where $a^2 = b^2 + c^2$ and hence $\rho_3 = k$ if $k \geq a + b$.

If A is normal ($AA' = A'A$) the characteristic roots of A lie on the circles of radii $\rho_1, \rho_2, \dots, \rho_n$ (see [3]). Hence for normal matrices lower bounds for the greatest characteristic root are obtained from Theorem 1 and Theorem 3.

THEOREM 5. *Every normal matrix $A = (a_{ij})$ has at least one characteristic root λ such that $|\lambda| \geq \max |a_{ij}|$ and such that $|\lambda| \geq k^{-1} \max |s_k|$, where s_k is the sum of the elements in any k -rowed principal sub-matrix of A .*

COROLLARY. *If ρ_n^2 is the largest characteristic root of $A\bar{A}'$, then*

$$\rho_n^2 \geq \max \left| \sum_{k=1}^n a_{ik} \bar{a}_{ik} \right|, \quad \rho_n^2 \geq n^{-1} \left| \sum_{i,j=1}^n a_{ik} \bar{a}_{ik} \right|.$$

If the characteristic roots of the normal matrix A are $\lambda_1, \lambda_2, \dots, \lambda_n$ where $\lambda_k = \alpha_k + i\beta_k$, the characteristic roots of $(A + \bar{A}')/2$ are $\alpha_1, \alpha_2, \dots, \alpha_n$ and the characteristic roots of $(A - \bar{A}')/2i$ are $\beta_1, \beta_2, \dots, \beta_n$. Hence lower bounds for the greatest real and imaginary parts of the characteristic roots are given by the following theorem.

THEOREM 6. *If A is a normal matrix with characteristic roots $\lambda_k = \alpha_k + i\beta_k$, $k = 1, 2, \dots, n$, then*

$$\max |\alpha_k| \geq \max |\frac{1}{2}(a_{ii} + \bar{a}_{ii})|, \quad \max |\beta_k| \geq \max |\frac{1}{2}(a_{ii} - \bar{a}_{ii})|,$$

and also

$$\max |\alpha_k| \geq \max |(s_r + \bar{s}_r)/2r|, \quad \max |\beta_k| \geq \max |(s_r - \bar{s}_r)/2r|,$$

where s_r is the sum of the elements in an r -rowed principal sub-matrix of A .

For a normal matrix it follows from Theorem 4 that $\max |\lambda_k - m| \geq |a_{ii}|$, $i \neq j$, where m is the center of the smallest circle containing the characteristic roots of the matrix. If in particular A is an Hermitian matrix with characteristic roots $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \dots \leq \lambda_n$, λ_k real, then $m = \frac{1}{2}(\lambda_1 + \lambda_n)$ and $\max |\lambda_k - m| = \frac{1}{2}(\lambda_n - \lambda_1)$ and the following theorem is established.

THEOREM 7. *If $A = (a_{ij})$ is an Hermitian matrix with characteristic roots $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$, then $\frac{1}{2}(\lambda_n - \lambda_1) \geq \max |a_{ij}|$, $i \neq j$.*

For the Hermitian matrix A there exists a unitary matrix U such that $UA\bar{U}' = L = \text{diag. } \{\lambda_1, \lambda_2, \dots, \lambda_n\}$. The set S_3 for L is identical with the set S_3 for A .

If $\lambda_n = \lambda_1$, L is a scalar and hence S_3 consists of the number zero only. Assume $\lambda_n > \lambda_1$ and let x and y be real unit vectors with all components zero except the first and n -th. Since $x_1^2 + x_n^2 = 1$, $y_1^2 + y_n^2 = 1$ and $x_1 y_1 + x_n y_n = 0$, it follows that $(x_1 y_n - x_n y_1)^2 = 1$ and hence $x_1 = \sigma y_n$ and $x_n = -\sigma y_1$ where $\sigma = \pm 1$. Then $x L \bar{y}' = \lambda_1 x_1 y_1 + \lambda_n x_n y_n = \sigma y_1 y_n (\lambda_1 - \lambda_n) = \gamma$, and $|\gamma| = |y_1 y_n| (\lambda_n - \lambda_1) \leq \frac{1}{2}(y_1^2 + y_n^2)(\lambda_n - \lambda_1) = \frac{1}{2}(\lambda_n - \lambda_1)$. In particular if $y_1 = -y_n$, $|\gamma| = \frac{1}{2}(\lambda_n - \lambda_1)$. If γ is a real number such that $|\gamma| \leq \frac{1}{2}(\lambda_n - \lambda_1)$ the equations $y_1^2 + y_n^2 = 1$ and $y_1 y_n = \sigma \gamma / (\lambda_1 - \lambda_n)$ have solutions of the form $y_1 = \pm(r \pm s)/2$, $y_n = \pm(r \mp s)/2$ where $r^2 + s^2 = 2$. If $x_1 = \sigma y_n$ and $x_n = -\sigma y_1$, then $x_1 y_1 + x_n y_n = 0$ and $x_1^2 + x_n^2 = \sigma^2(y_1^2 + y_n^2) = 1$.

THEOREM 8. *The non-diagonal elements of all unitary transforms of an Hermitian matrix A consist of all complex numbers γ such that $|\gamma| \leq (\lambda_n - \lambda_1)/2$ where λ_1 is the least and λ_n is the greatest of the characteristic roots of A .*

4. The set S_2 . Since S_2 is a closed convex set which contains the diagonal elements of A , it also contains the number $c = n^{-1}T(A)$ where $T(A) = \sum_{i=1}^n a_{ii}$ is the trace of A . Let u_1 be a vector such that $u_1 A \bar{u}_1' = c$ and let U be a unitary matrix whose first row is u_1 , then $U A \bar{U}'$ is a matrix whose first diagonal element is c .

Suppose that V is a unitary matrix such that

$$V A \bar{V}' = \begin{pmatrix} A_0 & A_1 \\ A_2 & A_3 \end{pmatrix}$$

where A_0 is a square matrix whose k diagonal elements are all equal to c . Since $T(V A \bar{V}') = T(A)$, $T(A_3) = (n - k)c$ and there exists a unitary matrix W_3 such that $W_3 A_3 W_3'$ has its first diagonal elements equal to c . If

$$W = \begin{pmatrix} I_k & 0 \\ 0 & W_3 \end{pmatrix},$$

then $W V A \bar{V}' \bar{W}'$ has its first $k + 1$ diagonal elements equal to c . This completes the induction for the following theorem.

THEOREM 9. *If A is a square matrix with complex elements, there exists a unitary matrix ϕ such that the diagonal elements of $\phi A \phi'$ are all equal.*

In particular if $A = L = \text{diag. } \{\lambda_1, \lambda_2, \dots, \lambda_n\} \neq 0$ and $\sum_{i=1}^n \lambda_i = 0$, there exists a unitary matrix U such that

$$\sum_{k=1}^n u_{ik} \bar{u}_{ik} \lambda_k = 0 \quad (i = 1, 2, \dots, n),$$

and hence the matrix $W = (u_{ii} \bar{u}_{ii})$ is singular. If $V = (v_{ii})$ is a unitary matrix such that $M = (v_{ii} \bar{v}_{ii})$ is singular and $\xi = (\xi_1, \xi_2, \dots, \xi_n) \neq 0$ is a vector such that $M \xi' = 0$ then

$$\sum_{k=1}^n v_{ik} \bar{v}_{ik} \xi_k = 0 \quad (i = 1, 2, \dots, n),$$

and hence

$$\sum_{i=1}^n \left(\sum_{k=1}^n v_{ik} \bar{v}_{ik} \xi_k \right) = \sum_{k=1}^n \left(\sum_{i=1}^n v_{ik} \bar{v}_{ik} \right) \xi_k = \sum_{k=1}^n \xi_k = 0.$$

If A is a matrix with real elements and x is a real unit vector, then $x A x' = \sum_{i,j=1}^n a_{ij} x_i x_j$ is a real number and $x A x' = x A' x' = x((A + A')/2)x'$. Since

$(A + A')/2$ is a real symmetric matrix every number in its field of values is given by a real unit vector and by argument similar to the above it follows that there exists a real orthogonal matrix ψ such that $\psi((A + A')/2)\psi'$ has its diagonal elements equal. Since $\psi A \psi'$ and $\psi A' \psi'$ have the same diagonal elements it follows that the diagonal elements of $\psi A \psi'$ are equal and hence each is $n^{-1}T(A)$.

THEOREM 10. *If A is a real matrix there exists a real orthogonal matrix ψ such that $\psi A \psi'$ has its diagonal elements all equal.*

COROLLARY 1. *A real quadratic form with matrix A is equal to k for n mutually orthogonal unit vectors if, and only if, $k = n^{-1}T(A)$.*

COROLLARY 2. *If $a = (a_1, a_2, \dots, a_n) \neq 0$ is a real vector such that $\sum_{i=1}^n a_i = 0$, there exists a real orthogonal matrix $C = (\cos \alpha_{ij})$ such that $C_1 = (\cos^2 \alpha_{ij})$ and $C_2 = (\cos 2\alpha_{ij})$ are singular matrices and $C_1 a' = C_2 a' = 0$.*

If $A = \text{diag. } \{a_1, a_2, \dots, a_n\} \neq 0$, the diagonal elements of CAC' are

$$\sum_{k=1}^n \cos^2 \alpha_{ik} a_k \quad (i = 1, 2, \dots, n),$$

and if each of these is $n^{-1}T(A) = 0$, $C_1 a' = 0$. Since $\cos^2 \alpha_{ik} = \frac{1}{2} + \frac{1}{2} \cos 2\alpha_{ik}$,

$$\sum_{k=1}^n \cos^2 \alpha_{ik} a_k = \frac{1}{2} \sum_{k=1}^n a_k + \frac{1}{2} \sum_{k=1}^n \cos 2\alpha_{ik} a_k = 0$$

and $C_2 a' = 0$ since $\sum_{k=1}^n a_k = 0$.

REFERENCES

1. F. HAUSDORFF, *Der Wertvorrat einer Bilinearform*, Mathematische Zeitschrift, vol. 3(1919), pp. 314-316.
2. C. C. MACDUFFEE, *The Theory of Matrices*, New York, 1946.
3. W. V. PARKER, *The characteristic roots of matrices*, this Journal, vol. 12(1945), pp. 519-526.
4. W. V. PARKER, *Characteristic roots and the field of values of a matrix*, this Journal, vol. 15 (1948), pp. 439-442.
5. OTTO TOEPLITZ, *Das algebraische Analogon zu einem Satze von Fejér*, Mathematische Zeitschrift, vol. 2(1918), pp. 187-197.

THE UNIVERSITY OF GEORGIA.